6.5 小结

尽管 Paxos 算法已提出几十年,但它为分布式系统中的一致性与容错性问题提供了理论框架,开创了分布式共识研究的先河。

Paxos 基于“少数服从多数”(Quorum 机制)原则,通过“请求阶段”和“批准阶段”在不确定环境下,解决了单个“提案”的共识问题。多次运行 Paxos,便可实现一系列“提案”的共识,这就是 Multi-Paxos 的核心思想。Raft 算法在 Multi-Paxos 的基础上,在一致性、安全性和可理解性之间找到平衡,成为业界广泛采用的主流选择。

接下来,再思考一个问题,Raft 算法属于“强领导者”(Strong Leader)模型,领导者负责所有写入操作,它的写瓶颈就是 Raft 集群的写瓶颈。那么,该如何突破 Raft 集群的写瓶颈呢?

一种方法是使用哈希算法将数据划分成多个独立部分(分片)。例如,将一个 100TB 规模数据的系统分成 10 部分,每部分只需处理 10TB。这种根据规则(范围或哈希)将数据分散处理的策略,被称为“分片机制”(Sharding)。分片机制广泛应用于 Prometheus、Elasticsearch 、ClickHouse 等大数据系统(详见本书第九章)。理论上,只要机器数量足够,分片机制就能支持任意规模的数据。

总字数:359
Last Updated:
Contributors: isno